Hall Ticket Number:

Code No.: 16450 H

VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS), HYDERABAD

Accredited by NAAC with A++ Grade

B.E. (Honours) VI-Semester Main Examinations, May/June-2023 FPGA based System Design

(E.C.E.)

Time: 3 hours

Max. Marks: 60

Note: Answer all questions from Part-A and any FIVE from Part-B

Q. No	Part-A ($10 \times 2 = 20 \text{ Marks}$) Stem of the question	1	N.		-		
1.	What are the different types of FPGA, based on programming type?	T P	VI	L	CO	PO	PSC
2.	Mention three main functions of an I/O pad in an FPGA.	12	2	1	1	1	1
3.	What is the range of decimal numbers is	2 2	4 1	1	1	1	1
4.	system for a binary number with M integer bits? How many logical functions can be formed with 3 variables? Explain.				2	1	1
5.	Find the minimum number of bits required for storing the result of the arithmetic operation (A + B*C), where A is an 8-bit number and B, C are	-	3		2	2	1
6.	How can an XOR function act as parity generator?	12			•		
7.	Identify the minimum number of D Flip Flops required in a counter with an input frequency of 5x10 ⁵ Hz and an output frequency of 100Hz.	2	1 2		3	2	1
8.	Write the differences between Moore and Mealy type of State Machine.	2	1	4	1	1	1
9.	How many parts of 1K x 4 SRAMs will be needed to construct a 16K x 16 SRAM?		2			1	1
10.	Assuming 1 pin for chip-select, and 1 pin for rd/wr, how many total signal pins will be present on the above 1K x 4 SRAM?	2	2	5		1	1
	Part-B $(5 \times 8 = 40 \text{ Marks})$						11
. a)	Explain FPGA architecture with a neat block diagram.	4	2	1		1	1
b)	Draw the Flow Diagram for Programming an FPGA using Xilinx Vivado Tools. What is the role of a constraint file?	4	2	1		1	1
. a)	Differentiate between Blocking and Non-Blocking	4 .	4	2	1		1
b)]	mplement the function $F = \sum (1.47810.15.18.21.25.28.21)$	4 4	1	2	3		1

Code No.: 16450 H

3. a)	An 8-to-3 priority encoder has data inputs in increasing order of priority as follows: A, B, C, D, E, F, G, H. It has also got a single bit output V which is 1 if any one or more bits are asserted. Derive the simplified logic equations for the priority outputs P2, P1, P0 and also for the output V.	4	3	3	3	1
b)	Design full adder using only 2x1 multiplexers.	4	4	3	3	1
4. a)	Describe the conversion procedure for converting a T-Flip flop into a JK- flip flop. Draw the circuit diagram.	4	4	4	2	1
b)	Draw a Moore State diagram to show the detection of the bit-sequence 11001. Overlapping sequences must be detected. Write the output of the state machine when the 20-bit input sequence is 1100_0010_0110_0110_0011.	4	3	4	2	1
15. a)	Design an SRAM of 16Kx8 using 4Kx8 SRAMs such that addresses 0-3 are in the first SRAM, addresses 4-7 are in the next SRAM and so on	4	4	5	1	1
b)	Weiled gode written for a Testbench versus the	4	2	5	1	1
16. a)	A SIC in Digital System Design.	4	1	1	1	1
b	Weiles module 'bitmatch' with code at behavioral		3	2	2	1
17.	Answer any two of the following:		7/12		2	1
8		4	. 4	. 3	3	1
ł	Model a mod-100 Counter with Asynchronous active low reset, using Verilog HDL.	g 4			1	1
	Explain the role of FIFO in serial communication. Explain the role of FIFO in serial communication. PO: Property of the control of the cont			2 5	1	17.

M: Marks; L: Bloom's Taxonomy Level; CO; Course Outcome; PO: Programme Outcome

Terronomy I aval – 1	20%
Blooms Taxonomy Level – 1 Blooms Taxonomy Level – 2	30%
Blooms Taxonomy Level - 3 & 4	50%
